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We give a new and more manageable characterization for Cyclic P61ya
Frequency functions of order 3 (CPF3). Our result also improves present knowl
edge concerning smoothness properties in CPF. In particular, a conjecture of
Mairhuber, Schoenberg, and Williamson, On variation-diminishing transforma
tions on the circle, Rend. Circ. Mat. Palermo (2) 8 (1959), 1-30, about discontinu
ous CPF functions is established.f:) 1994 Academic Press, Inc,

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let ~ denote the set of functions f: IR ---+ IR with the following proper
ties: f is 277"-periodic and of bounded variation in each period. f is
non-negative and satisfies

and

2f(t) = f(t + 0) + f(t - 0),

1 12
77'- f(t)dt=1.

277" 0

t E IR, (1 )

(2)
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fEN is called a Cyclic P6lya Frequency function of order 2r + 1 (written
as f E CPFZr +]) iff

(3)

holds for k = 0,1,2, ... , r, and for any system of real numbers

::; X Zk + 1 < XI + 27T,

::; YZk+1 < Yl + 27T.

Evidently, CPF3 :::l CPFs :::l ••. , and we write

CPF:= n CPFZr + ,.
rEN

This notation was introduced by Karlin [1], but the class CPF was first
studied in a 1959 paper by Mairhuber, Schoenberg, and Williamson [3]. In
this latter paper the interesting variation diminishing properties of CPF
functions were unearthed. To describe this we make use of the following
notation. For any finite sequence (Xl"'" X n ) from IR let V(X I,···, x n )

denote the number of sign changes in that sequence (after deleting all zero
terms). For a bounded 27T-periodic function f: IR ~ IR we define its cyclic
variation by

where the supremum is extended over all finite selections

n E N.

THEOREM A. Let fEN. Then f E CPF iff

where

1 127T
(f*g)(t):= - g(x)f(t-x)dx,

27T 0
t E IR,

(4)

holds for any piece-wise continuous and 27T-periodic function g: ~ ~ IR.
More precisely, if r E N, then f E CPFZr +] iff (4) holds for any piece-wise
continuous and 27T-periodic function g: ~ ~ IR with vc(g) ::; 2r.

The CPF part of Theorem A is in [3], while the extended CPFZr + I

version has first been published in [1]. For a new, and more direct proof of
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Theorem A compare Kurth [2]. The variation-diminishing property dis
cussed in Theorem A is definitely a very interesting subject, and Theorem
A seems to be a very elegant solution to the characterization problem for
these functions (or kernels). However, the determinant conditions in (3)
are not easily dealt with, and they have been of very limited use when it
comes to deciding whether a given function has the variation-diminishing
property or not. For non-periodic functions (the so-called line case) this
problem has a longer history, and a complete analytic characterization of
the corresponding P6lya Frequency functions in terms of the famous
P6lya-Laguerre class of entire functions is available. That such a striking
result cannot be expected in the CPF case was already shown in [3]. In
fact, nothing much is known even about smoothness properties of CPF or
CPF2r + 1 functions. Karlin [I] has shown that the members of CPF3 have at
most two discontinuities in a period. However, a conjecture made in [3]
states that this result is possibly not the best one can obtain, at least for
the smaller class CPF. Let, for 8 > 0,

if 0 < t < 217'
if t = 0

C = ----::---:-::-
5(1 - e- 21T / 8 ) •

(5)

Then, as shown in [3], K8 , if extended periodically to IR, belongs to CPF.

Conjecture. The functions K 8{ ± t + c), where c E IR, are the only
non-continuous elements in CPF.

One of the goals of the present paper is to prove this conjecture. In fact,
we shall show that the functions mentioned in the conjecture are already
the only discontinuous elements in CPF3 (compare this with Karlin's result
mentioned above).

What is actually done in this paper is to give a complete analytic
description of the elements in CPF3. The results obtained here (as far as
smoothness properties are concerned) are stronger than what has been
known so far even for the much smaller class CPF.

The starting point of our discussion is the obvious fact that every CPF3
function (via Theorem A) preserves periodic monotonicity. A 217'-periodic,
piecewise continuous function g which satisfies (1) is called periodically
monotone (g E PM) iff

(6)
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A function IE.wt is said to preserve periodic monotonicity (I E PMP) iff

Vg E PM: 1* g E PM.

The class PMP (without the-for our present purpose useful-restriction:
IE.wt) has been studied and completely characterized in [4].

THEOREM B. Let IE.wt. Then I E PMP iff it satisfies Ca)-(c) below.

Ca) I is periodically monotone.

Cb) I has at most two discontinuities in a period, and in each such
discontinuity s we have I/Cs + 0) - ICs - 0)1 = sup", 1- inf", f.

(c) I is continuously differentiable in any open interval in which I
assumes neither its supremum nor its infimum. Furthermore, log If' I is
concave in thos.e intervals.

Since CPF3 c PMP, the necessary conditions expressed in Theorem B
are valid for any IE CPF3 as well.

In the sequel we shall use the following abbreviation:

Assume for the moment that a function IE CPF3 belongs to C 4([R). A
simple verification shows then

I(x)

f'( x)x + 2h
2h

rex) f'(x)
x + 3h) = f"'(x) rex)

3h r 4 )(x) Iff/(x) rex)

-F2(x) d 210g(F(x»

I( x) dx 2

for x E IR, where

~ 0,

F(x) :=lr(x)/(x) - (f'(x»21.

(7)

This implies that in each interval where both, I and F, are positive we
have

10glr(x)/(x) - (f'(X»2\ concave, (8)
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a fact which does not use the existence of the third and fourth derivative
of f. This is an important observation and actually the guide to our main
results, which we are now ready to state explicitly. If I is some open
interval of IR then we shall write f E UI) if f E C 2(I), f and I!"(x)f(x)
- (f'(x)21 are positive in I, and f satisfies (8) in I.

THEOREM 1. The only functions in CPF3 which are not in CO(IR) are
those mentioned in the conjecture above.

THEOREM 2. Let f E.91' n COm) and assume that f has zeros. Then f
belongs to CPF3 if and only if it has the following structure:

(a) There exist points x a $ x h < x a + 2rr such that f == 0 in [xa' Xh].

(b) For 1:= (X b , x a + 21T) we have f E UI).

THEOREM 3. Let f E.91' n CO(IR) be zero-free. Then f E CPF3 if and
only if it satisfies the conditions (a)-(c) below.

(a) The one-sided derivatives f~, f~ of f exist everywhere and the
function

P/X) := (t~(x) + f~(x))/(2f(x)) (9)

is periodically monotone.

(b) PI has at most two discontinuities in a period, and at each such
discontinuity s we have IPI(s + 0) - Pis - 0)1 = sUP[R Pr - inf[R Pr .

(c) In each open interval I, in which Pr assumes neither its supremum
nor its infimum, we have fEU n.

Note that a CPF3 function is continuously differentiable with the excep
tion of at most 2 points in a period and is twice continuously differentiable
with the exception of at most 4 points in a period. It is worthwhile to
remark that PI' if f has two points in a period where it is not differen
tiable, is a very simple step-function, so that f is indeed e", except at
those two points (where f takes its maximum and minimum). It is, of
course, easy to write down these functions explicitly.

Theorem 3 has another interesting consequence which we mention in
passing (a somewhat weaker version of it will be instrumental in the proof
of Theorem 3).

THEOREM 4. Assume that f E.91' n C 2(1R) is zero-free. Then f E CPF3 if
and only if

!"(t) .f'(t)
--+1--
f(t) f(t) ,

0$t<21T, ( 10)

is a Jordan curve with a convex interior domain.
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As has been pointed out before, the "only if" parts of Theorems 1-4
apply to CPF as well. Since our results come only from the CPF3 class, it is
very likely that in CPF much higher smoothness prevails. At this point,
however, it is not easy to make a reasonable guess in this direction.

The plan of this paper is to prove Theorem 1 in Section 2, to establish
the "only if" parts of Theorems 2, 3 in Section 3, and the other directions
in Section 4.

2. PROOF OF THEOREM 1

We prepare this proof with some lemmas. These will be useful also in
later sections.

LEMMA 1. A function f E CPF3 has at most one discontinuity in a
period.

Proof From Theorem B we know that f has at most two discontinu
ities in a period, and if it has two, then it must be a step function. Without
loss of generality assume that 0,2s E [0,2 7T) are the points of discontinu
ity of f, which then, in [0, 27T), may be written

[(x) ~ {Irm + M)

for x E (0,2s)

for x = 0, x = 2s

for x E (2s,27T),

where °:::;; m < M. Choosing E := min{( 7T - s) / 4, s / 4} one obtains

D (3E
f °

s + 2E
2E

M M
2s + E) = M M

4E m M

m
M =-M(M-m)2<0,
M

which contradicts f E CPF3· I
LEMMA 2. Let f E CPF3 and M := sup~ f > m := inf~ f. Then, in any

given period, f assumes M in at most one point. The same holds for m if
m > 0.

Proof If f assumes M at more than one point in a period, then we
deduce from Theorem B that f assumes M on an interval of length
2s E (0, 27T) (it is understood that 2s is the largest possible of those
numbers), and Lemma 1 tells us that f is continuous on at least one of the
endpoints of this interval. In fact, we can normalize the situation so that f
is continuous at 0, and f(O = M for °:::;; t < 2s. We now may choose
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&E (0, s12) so that f is strictly increasing in ( - 5&,0). Then

23

(
-3&

Dr -2&
s
o

f( -&)

f( S + 2&)

f(25 + &)

f( -E)
M

f(2s + &)

f( - 3&)

f(s)

/(25-&)

f( -3&)

M
M

f( -4&)

f( S - &)

f(2s - 2&)

f( - 4&)

M
M

= M(M - f(2s + &»(f( -4&) - f( -3&»

< O.

For & sufficiently small this contradicts f E CPF3. A similar argument
works for m, but obviously only if m > O. I

The following simple observation will be useful.

LEMMA 3. Let I be some open interval and f E Cl(f) be positive with
tlf strictly monotone in I. Then, for t1' t z E I, t l < t z the function

F( h) := If( t 1 + h)
f(tz+h)

is positive for small h > 0 ift If increases and negative ift If decreases.

For a proof of this lemma just note that F'(O) is positive if t If
increases and negative if it decreases.

Proof of Theorem 1. Let f E CPF3 be not continuous. Without loss of
generality we may assume that s = 0 is such a discontinuity of f, and that
f(O + 0) > f<O - 0). If f(O - 0) = 0 then let (0,8) c (0, 2'lT) be the larg
est interval in which f is positive, in all other cases set 8 = 2'lT. Using
Lemma 2 and f E PMP we deduce that f is strictly decreasing and
continuously differentiable in I := (0,8).

We wish to show that f'lf = const. in I. Assume there exists an interval
I) c I on which f'lf is strictly decreasing. Then we choose t), t z Ell'

t 1 < t z. For small positive numbers &, h we have

t 1 - &< t 1 + &< t z + &< t I - & + 2'lT and - h < 0 < t 1 < - h + 2'lT.
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f(t,-e+h)

f(t)+e+h)

f(t I + e + h)

f(t) - e)

f(t, +e)

f(t) + e)

f( -E)

f(E)

f(t 2 -t]+e)

f(t)+h) f(t) f(O-O)

f(t]+h) f(tt) f(O+O)

f(t 2 +h) f(t 2 ) f(t 2 -1 1 )

-(f(0 + 0) - f(O - ())I;~;:: ~~
< 0,

where we made use of Lemma 3, applied to I,. This contradicts f E CPFy

Similar reasoning yields

under the assumption that flf is strictly decreasing in 1\.
We can now conclude that f(t) = Ce At for t E (0, (J) and some con

stants C > 0, A < 0, which per se implies that (J = 27T. This completes the
proof of Theorem 1, taking into account the normalizations we had
applied to f· I

3. SUFFICIENT CONDITIONS FOR CPF3

A crucial tool in our work is connected with convex curves in the
complex plane. They are defined as follows. A piecewise continuous
bounded function r( t) = 'Y]( t) + i 'Yl t): [0, 2 7T) ~ C is called a convex
curve if

( 11)

where 'Y" 'Y2 are assumed to be periodically extended to IR. If, for instance,
r happens to be a Jordan curve, then this condition means that the
interior domain of this curve is a convex set, which accounts for the name
"convex curve." However, it is easy to obtain some geometric feeling for



CYCLIC VARIATION-DIMINISHING TRANSFORMS 25

"convex curves" also in the more general cases. Another, equivalent
description of the condition (1) is that

1 'Yl(X t )

1 'YI( x 2 )

1 'YI( x 3 )

'Y2( x d
'Y2( x 2 )

'Y2(X 3 )

( 12)

is of constant sign for all choices of x I < X 2 < X 3 < X I + 2 7T. If this sign is
positive, then we say that r is positively convex. It can be seen that this
means that the boundary of the closed convex hull of {n!): 0 ~ t < 27T},
is traversed in the positive direction by nt). If the determinants (2) are
all strictly positive, then nt) is called a strictly positive convex curve.
Geometrically this means that r, in addition to the other already men
tioned properties, maps no interval onto a line segment or a single point.

LEMMA 4. Assume that f E Sf' is a zero-free, non-constant trigonometric
polynomial. Then f E CPF3 if and only if

is a strictly positive convex curve.

Proof Assume f E CPF3, so that

o~ t < 27T, (13)

:3) =

r(x l ) r(x/) f( XI)

lim h- 3Dr ( XI
X 2 1"( x 2 ) r(x 2 ) f( x 2 ) ~ ° (14)

h~O+ -h ° f"(x 3 ) r(x3 ) f( x 3 )

for all choices of x I < X 2 < X 3 < X I + 2 7T. Hence

1 1"( x I) If( x 1) r(xt)/f(x l )

1 f"(x 2 )lf(x2 ) r( x 2 )lf( x 2 ) ~ 0, (15)

1 1"( x 3) If( x 3) r(x3 )lf(x3 )

which shows that (13) defines a positively convex curve. Since f is a
trigonometric polynomial it is easily seen that this curve cannot contain
line elements and is never constant on intervals. Therefore it is strictly
convex.

Now assume that the curve (13) is strictly positively convex so that the
determinants (IS) are all positive. Assume there exist numbers



26

with

KURTH, RUSCHEWEYH, AND SALINAS

::) =

f(Xl-Yl)

f(x 2 - YI)

f(x 3 - yd

f(X l -Y2)

f(x 2 - Y2)

f(x 3 - Y2)

f(X I - Y3)

f(x 2 - Y3)

f(x 3 - Y3)

<0. (16)

We fix the numbers xi' j = 1,2,3, and distinguish two cases, namely
whether (16), with < 0 replaced by ~ 0 holds for all choices of Yl < Y2
< Y3 < Yl + 2'7T or not. In the first case we see as in (14)

1 f"(xl)/f(x l )

1 1"( x 2 )/f( x 2 )

1 1"( x 3 )/f( x 3 )

f'(xl)/f(x l )

f'(x 2)/f(x2) ~ 0,

f'(x 3 )/f(x3 )

which contradicts our assumption on f.
In the other case it is evident that the closed curve

f(x 2 -t) .f(x3 -t)
F(t) := f(x l - t) + 1 f(x

i
- t) , 0~t<2'7T,

is not convex. There are two possible (not mutually exclusive) reasons for
that: either (a) the tangent vector does not turn monotonically, or (b) the
curve has self-intersections.

(a) In this case

(
f(X 3 - t) )"(f(X2 - t))' _ (f(X 3 - t) )'(f(X2 - t))"
f(xl-t) f(xl-t) f(xl-t) f(xl-t)

f(X2 - t)f(x 3 - t)

f(x i - t)2

1 f"(x 3 -t)/f(x3 -t)

xl f"(x 2 -t)/f(x2 -t)

1 f"(xl-t)/f(xl-t)

f'(x 3 - t)/f(x3 - t)

f'(x 2 - t)/f(x2 - t)

['(Xl - t)/f(x l - t)

takes positive and negative values (with t varying). As above, this contra
dicts the assumption on f.
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(b) The support of r is completely contained in the upper right
quadrant of the complex plane. If r has self-intersections this means that
(dldr)arg no changes sign at least four times in a period. But

d d [(x.,,-t)
-arg T( t) = -arctan (- )dt dt [ X2 - t

[(x 2 -t) 1

(t(x 2- t»)2 + (t(x
3

- t»)2 [(x 3 - t)

X ({(X 3 - t) _ {(x 2 - t»).
[(x3 -t) [(x 2 -t) '

so that

(
{(X 3 - t) {(x 2 - t»)

u - ;;::: 4.
c [(x 3 -t) [(x 2 -t)

( 17)

Using (11) and (6), the convexity of (13) shows that {I[ is periodically
monotone, and this obviously contradicts (17). I

It is well-known (ct. [1]) that the de-la-Vallee-Poussin kernels

n E N,

are in CPF and therefore cyclic variation-diminishing. Furthermore, if g is
a 21T-periodic piecewise continuous bounded function satisfying (1) then

lim (v" * g)( x) = h g (x + 0) + g (x - 0»,
n .... oc

X E ~. (18)

If g is continuous in a compact interval, then the convergence (J 8) is
uniform in that interval.

These properties lead easily to the following conclusion:

(19)

Note that Lemma 4 is a somewhat weaker version of Theorem 4, which,
in turn, can be seen as a sort of limiting case of Lemma 4, using the v".
We omit the details.

The next lemma establishes the link between convex curves as described
above, and the class L( I) (compare (8».
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LEMMA 5. Assume that f E C 2«a, b)) with f> 0, and (I'lf)' > 0
« 0) in (a, b). Then we have f E L«a, b», i.e.,

logl!"( x)f( x) - (f'( x) )21 concal'e in (a, b),

iff there exists a concal'e (convex) function H: (f'(a }jf(a), f'( b)If(b) ~ IR:
satisfying

!,,(x) = H(f'(X»)
f(x) f(x)'

xE(a,b).

Proof Note that under our general assumptions the function H exists
and is continuous. Following the idea in [4, Lemma 12] we only need to
show that for x E (a, b) the relation

,F(X+E)-F(x) ,H(Y+E)-H(y)1
hm = hm
E~O+ E ,·~o+ E y~f'Ld/fLd

(20)

with
F(x) = logl!,,(x)f(x) - (f'(x))21

holds if at least one of the two limits involved exists, And the correspond
ing relation should be true for the left-sided limits as well.

Assume that the limit on the left of (20) exists and equals a. We then
have

I
, log«(f'If)')lx+,' -log«f'If)')lx 21 (f( ))'

a = 1m + og x
E~O+ E

= lim log(H(f'If) - (f'1f)2)lx+, -log(H(f'If) - (f'1f)2)lx

E~O· E

+ 210g(f(x))'

Applying the mean-value theorem to the log-function we can then write
(using lim,~(J+ (J(d = 0)

a = lim (H(f'If) - (f'1f)2)1x+, -(H(f'If) - (f'1f)2)1x

E-->O+ E[(H(f'If) - (f'1f)2)\x + 8(E)]

= lim H(f'/f)lx+E -H(f'If)Ix

E-->O+ E(f'If) 'Ix
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1'1 1'1 (1')'1- -- +E-
I x+, I x I x+8(e)
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with 8(E) positive for positive (small) E, and continuously extendable into
E = 0 with 8(0) = O. It is clear that these properties of 8 are shared by the
function

Y(E) :=E(II')'I '
x + Me)

which eventually leads to

. H«f'/f)lx + Y(E)) - H«F/f)lt) (f'/f)'lx+s(»
a = hm

,->0+ Y( E) (f'/n'lx

. H(Y+E)-H(Y)j
= hm ,

,->0+ E y-['(x)/f(x)

the assertion. I

We now begin with the proof of the "if" part of Theorem 3. We first
study the case where Pf is continuous in IR, and define

C I := minPf ,
lR

We assume that these values are taken by Pf in Ib := [XI' x 2 ] and in
It := [x 3 , X4]' respectively, where

but nowhere else. We set

so that Pf strictly increases in Ii' and strictly decreases in [d' The
assumption in Theorem 3 now is that IE L(I) n L(Id)' Lemma 5 then
yields a concave function H I and a convex function H 2 with

reX) = (H\(f'(X)/I(X)),
I(x) H2(f'(x)/I(x)),

We note that this implies the existence of the left-hand and right-hand

640/79/1-3
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limits of !" everywhere, and we define

f2(X) := H!"(x - 0) + !"(x + 0)),

We study the behavior of the complex function

fl(x) := f(x) + /2(X)
f(x) f(x)

for x E I; U Id • In I; we have (I'lf)' > 0, and hence

!,,(x) > (f'(X))2
f(x) f(x)'

X E IR.

(21)

This shows that if (Re(fl),Im(fl)) is looked at in a (u, v) plane, its
restriction to I; is a concave curve above the parabola (u, u 2

), u E IR. A
similar observation for I d shows that fl restricted to I d is a convex curve
below that same parabola. The projection to the u-axis is in both cases the
interval c 1 < u < c2 • Also note that fl is a I-I-mapping in I; U Id • In the
remaining intervals (which may degenerate to points) fl is piecewise
stationary, with the real part constantly equal to C\ or cz, and the
imaginary part monotonically moving. It is now clear that fl is a "convex
curve" in the sense discussed earlier in this section. In fact it is readily
seen that it is negatively oriented. We now make use of (II) to conclude
that

'r/a,b,c E IR: uc(af(x) + bf'(x) +Cf2(X)) ~ 2

Using the CPF property of the de-la-Vallee-Poussin kernels this implies

holds for n E N. Furthermore, (Vn * f)( x) > 0 for all x, and therefore we
may deduce that

is a convex curve as well, and at least for large n it will be negatively
oriented. Using integration by parts one easily verifies that

and
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and this implies that the curves
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are strictly positive convex curves (note that Vn * f is a trigonometric
polynomial). Lemma 4 now proves that Vn * f is in CPF3 for all n large
enough. The defining property for CPF3 and (8) completes the proof of
Theorem 3 for continuous PI'

The "if" parts of Theorem 2 and the remaining cases of Theorem 3 will
be reduced to the case just discussed, showing that the functions in
question are only limiting cases of those already studied. This is based on
a suitable "patch" function which we are going to discuss in the next
lemma.

LEMMA 6. Let a,f3,y,xo,x l E IR satisfy af3 < O,y > O,x o <Xl <

X o + 21T. Then there exists F E L«xo, XI» with

(22)

F'I = a,
F X=XlI

F'I- ={3,
F X~XI

(23)

where the derivative is with respect to the variable x.

If necessary we shall write F(a, f3, y, Xo, X 1; x) instead of F(x).

Proof It can be shown that there is a function of the form

(24)

which satisfies the four conditions (22), (23). Functions of the form (24)
have at most one (simple) zero (if they do not vanish identically), and this
together with (22) implies F > 0 in the interval (xo, X I)' A calculation
yields

F"(x)F(x) - (F'(X))2 = C IC2(A l - A2)2 e(A\+A 2 )x,

and this shows F E L«xo, X I». I
We continue with the proof of Theorem 3, and assume now that PI has

exactly one discontinuity, which in the notation given above means that
either ( or I d has collapsed. Assume I d has collapsed.

It is easily seen that the discontinuity of PI' namely at x 4 = XI + 27T,
corresponds to the (only) point where f assumes its maximal value in the
period. In fact, f is continuous, non-constant, and differentiable except in
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x 4 , by assumption. This means that Pr assumes positive and negative
values, i.e., c, < 0, c2 > 0. Hence I increases in (x 4 - £, x 4 ) and de
creases in (x 4 , X 4 + d, for some small £ > 0. Since the assumptions on Pr
also imply that I is periodically monotone, the claim follows.

Let £ > °be small. We can find xid < x 4 and x,(£) > x, so that

From Lemma 6 it now follows that the 2rr-periodic function ft"' whose
restriction to the period (x led, x I(d + 2rr) is defined by

~as Pr, continuous and satisfies (a)-(c) of Theorem 3. The same is_ true for
I, := c,f" where c, is the appropriate positive constant to make I,., satisfy
the normalization (2). Hence, by the part of Theorem 3 already proved, we
conclude that ~ E CPF3. Letting £ ~ °we find f E CPF3.

If Pr has two discontinuities, a similar discussion as above (with two
patches) can be applied to again obtain f E CPF3. This completes the
proof of the "if"-part of Theorem 3.

Next assume that I satisfies the assumptions of Theorem 2. Then a
similar construction as used just before (using a positive patch for
(xid, xld + 2rr), where x,(d < x a ' x 2(£) > x b are chosen so that
f(x,(d) = f(xid) = d leads to a function ~ which satisfies the assump
tions of Theorem 3, and hence 1, E CPF3. Taking the limit £ ~ °com
pletes the proof of the "if"-part of Theorem 2.

4. NECESSARY CONDITIONS FOR CPF3

In this section we shall prove the "only if" parts of Theorems 2,3. It is
therefore generally assumed that f E CPF3 u COm), and f non-constant.

We find a unique x M E [0,2rr) with f(XM) = max R f (Lemma 0.
Furthermore, f, as a member of PMP, is periodically monotone and
non-negative (Theorem B). Thus we find x a ' x b E (x M , x M + 2rr), x a ::5: x b

with I(x) = min R I for x a ::5: x ::5: x b and f(x) > min R f for x b < x < x a

+ 2rr. Lemma 1 implies that xa = xb whenever I is zero-free. We set
II = (x M , x), 12 = (x b ' x M + 2rr).

We begin with the statement of some immediate consequences of
Theorem B for our f.
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LEMMA 7. Let f be as above. Then the following statements hold true.

(a) The one-sided derivatives f~, f'- exist everywhere and are bounded.
~(f~ + L) is periodically monotone.

(b) flf is continuous and non-vanishing in I[ U Iz'

(e) The one-sided derivatives f~:= (fY± exist in I[ U I z' and f~/f are
decreasing functions there. r exists almost everywhere.

The actual behavior of f in II U I z is now derived in a series of lemmas.

LEMMA 8. Assume there exists an open interval I ell U I z on which
!'If strictly decreases. Then f is continuously differentiable in x M' Similarly,
if Xo = Xb and flf is strictly increasing on I, then f is continuously
differentiable at x O'

Proof Assume that!,If strictly decreases in I, and choose t I' tz E I,
t I < t z· Using the fact that f'-(x M) ~ 0 ~ f~(XM) we obtain

[(X M)

f( t l )

f(t z )

(f(X M) -f(xM-h»)/h

(J(tt) -f(tl -h»)/h

(I(t z ) -f(tz-h»)lh

f(xm-h)

[(t l - h)

f(tz-h)

lim h - zD ( x m t I thz )
h~O- f -h 0

f(xm+h) f(x m)

= lim h- z f(tl + h) f(t l )
h~O+

f(tz + h) f(t z)

(f(xM+h) -f(xM»)lh

= lim (f(t l +h) - f(tl»)lh
h~O+

(f(tz+h) -f(tz»)lh

f~(XM) f'-(x M) f(x M)

= f(td !'(t l ) f(td

!'( t z ) !'(tz) f(tz)

-f(tj)f(tz)(f'-(xM) - f~(XM»)(f(tl)lf(tj) - f(tz)lf(tz»)

sO.

For f E CPF3 this is only possible if eq\lality holds, which implies
f'- (x",) = f~ (x M) = 0, and therefore, using Lemma 7(a), (b), the asser
tion. The other case can be established in a similar fashion. I

LEMMA 9. Let I be some interval in which f is differentiable and positive,
and where Pf assumes neither SUPR Pf nor infR Pf' Then Pf is strictly
monotone in I.
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Proof Assume there are points XI < x 2 in / with P/x l) = Pf (x 2 ).

Choose ayE (0,271") with

f(xl-y) f(x 2 -y)
----*----

f(xd f(x 2 )

Since Pf assumes both larger and smaller values than P/x 1) in (x 2 ' XI +
27T), we can find X3 in that latter interval so that

Then

lim h-JD
f

{ XI
X2 :3)

h~O+ -h 0

t(x J) f( XI) f(xJ-y)

= 1'( X2 ) f( X2 ) f(x 2 -y)

t(x3 ) f( X3 ) f(x 3 -y)

Ptc X 2 )

= f( XI)f( X2 )f( X3 ) Pf ( X2 )

Pf ( X 3 )

f(x J - Y)/f(xd

f(x 2 - y)lf(x 2 )

f(x 3 - y)lf(x 3 )

< 0,

which is impossible for f E CPF3 · I

LEMMA 10. Assume that f has zeros. Then tlf is continuous and strictly
decreasing in (Xb' x a + 271").

Proof Assume there is an interval I ell U /2 in which Pf strictly
increases. Choose x I < X 2 in / and note that, by Lemma 3,

I
f(X 1 +h)

f( x 2 + h)
and

f(X1-h)1 <0
f(x 2 -h)

holds for small positive h. Since f(x a - h) > 0 and f(x a + h) z 0 we
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obtain
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Df(~~ X02 :3)

f(xl+h) f(xd

f(x 2 +h) f(x 2 )

f(xa+h) f(O)

I
f( Xl)

= f(x u + h) f(x
2

)

f(xl-h)

f(x 2 - h)

f(xu-h)

f(XI-h)1 If(XI+h)
f(x

2
- h) f(x u - h) f(x

2
+ h)

< 0,

again a contradiction. The function Pf = I'lf cannot be constant in any
interval of the form (xu - E, xu) or (x b ' xb + d for small positive E,

because f * 0 as a solution of a differential equation I' = Cf, could not
approach zero at Xu or xb ' respectively. This shows that there is an
interval I suitable for the application of Lemma 8, and so f is continu
ously differentiable in x M , and therefore in the whole of (xb ' X a + 2rr).
Lemma 9 then implies that I'lf is actually strictly decreasing in that
interval. I

LEMMA 11. Assume that f is zero-free. Then the assertions (a), (b) of
Theorem 3 hold. Furthermore, Pf is strictly monotone in each of the
intervals mentioned in Theorem 3(c).

Proof We have x m := Xu = x b ' and Pf can be discontinuous only at
xM andlor X m • Hence Pf has at most two discontinuities. Assume there is
an interval where PI is strictly monotone. Then by Lemma 8 we infer that
Pf is continuous on at least one of the two possible points, and so has at
most one discontinuity.

Hence, if PI has two discontinuities, then it must be a step-function
jumping from its minimum to its maximum and back, with the property

X E IR.

This completes the proof in this case.
If Pf decreases strictly somewhere (in an interval) and has a discontinu

ity, then that one must be at x m . Then Pf must be decreasing in
(X m , x m + 2rr), and the result follows. A similar argument works if the
discontinuity is at X M'

Now assume that Pf is continuous. Then, by Lemma 7(a), I' is periodi
caIly monotone and has therefore exactly two sign changes in a period.
According to Lemma 9, Pf always moves strictly monotonically from its
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(positive) maximum to its (negative) minimum. Since it hits zero on each of
these passages, there can be at most two such zeros in a period: Pf is
periodically monotone.

The assertion about the intervals mentioned in (c) foHows immediately
from Lemma 9. I

We begin the discussion concerning second derivatives in the intervals
where Pf is strictly monotone. For small h > 0 and x} < X 2 < X 3 < X t +
21T we have

(I(x t + h) + f(x t - h) - 2f(x 1»/h 2

(I(x 2 + h) + f(x 2 - h) - 2f(x 2»/h 2

(I(x, + h) + I(x, - h) - 2f(x,»/h 2

(I(xt> - f(x t - h»/h

(I(x 2 ) - f(x 2 - h»/h

(I(x,) - f(x, -h»/h

f(x t )

f( X2)

f(x,)

In any point x where the limit exists, we define

f;'(x) := lim h- 2 (f(x + h) + f(x - h) - 2f(x».
h-->O

It is then clear, that

f;'( XI)

f;' (x 2)

f;'( X3)

f'( Xl)

f'( X 2)

f'(X 3 )

f(xd

f(x 2 ) <O=f$.CPF3 ,

f( X 3 )

(25)

assuming that the J;'(x) exist. It is easily seen that in any interval in which
f'~ exists the relation

(26)

holds.

LEMMA 12. Let [ be an open interval in which Pf is strictly monotone.
Then f E C 2(I). Furthermore, f"lf is piece-wise monotone in [.

Note that the same conclusion holds trivially in any interval where
Pf = const. or f == O.

Proof We first assume that I contains neither of the points x M , x a ' xb •

Then I is subset of either I} or 12 , Lemma 8 with (26) show that J;' exists
in I, and that f;' If' is decreasing there. Once we have shown that f;' is
continuous in I, then, because of the monotonicity, the same holds for f'~.
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for f~. And since I" exists almost everywhere in I, this suffices to settle
our claim.

Assume that t:' is not continuous at i E J. Since f;'/r is decreasing,
we have

Assume f'{X) < O. Then we choose a point x 3 in I with Pr< x 3) < Pr< i)
so that

f;'(i - E) f'(i - E) f(i - E)

t:'(i + E) f'(i + E) f(i + E)

[:'( x 3 ) f'( x 3 ) [( x 3 )

= (!"( - - 0) - !"( - + 0»1f'(i) [(i) I
s x s x r(x

3
) [(x

3
)

(
[;I(i - 0) [;'(i + 0) ) (['(i) f'(X 3 ») I _ _

= ['(i-O) - r(i+O) f(i) - f'(x
3

) [(x)f(x)[(x 3 )

< O.

In view of (25) this contradicts [E CPF3. A similar method works if
r(X) > O.

Assume now that Pf is strictly decreasing in I. We show that 1"/[
cannot attain a local maximum in J, which implies the piece-wise mono
tonicity. If x I < X 2 < X 3 are three points in I with

1"( x d 1"( x 3)
--=
[(Xl) [(x 3 )

then

f"(x l ) f'(x l ) [(Xl)

f"(x 2 ) f'(x 2 ) [(X 2 )

f"(X 3 ) r(x3 ) [(x3 )

(
f"(X 2 ) f"(X 3») (f'(X 3 ) r(x,»)

= [(X I)[(X2)[(X3) [(X
2
) - [(x

3
) [(x

3
) - [(Xl) < 0,

another contradiction. If Pf is strictly increasing in I, then a similar
argument can be used to complete the proof for these intervals I.
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If 1 contains x M then PI strictly decreases in I, and we know already
that (applying the previous part to the two subintervals of 1 which do not
contain XM) I" exists and is continuous in 1 \ {XM}' For some e > 0 we
see that I"(x) ::s; 0 in J:= (x M - e, x M) U (X M, x M + e) since I is con
cave in a neighborhood of its maximum at x M" Furthermore, I" II can be
assumed to be monotonic in either of the two sub-intervals of J by what
has already been established in the present proof.

We can also assume that I" is bounded in J. In fact, otherwise there
would be a sequence {x k) cJ with x k -+xM, so that for ZI,Z2 EJ with
X M < ZI < Z2 and k large

I"(xd

sgn 1"( z,)

I"(Z2)

f'(Xk)

1'( zd
1'( z2)

-1

which is impossible.
The monotonicity and boundedness of I" II in J implies the existence

of the one-sided limits I"(x M ± 0) = f'~ (x M)' and it remains to show that
1:(xM) = 1:(xM). If, 1:(xM) < 1:(xM), then we choose Z E (x M - e, x M)
and obtain

lim
/)---'0+

I"(Z)
l"(xM - 0)

l"(xM+o)

1'( z)
f'(x M - 0)

f'(x M+ 0)

I(z)
l(xM - 0)

l(xM + 0)

< 0,

which again is impossible. A similar reasoning works for the case
1:(xM) > [:(x M), and so we are done.

Finally, if x a = xb = xm E I, and I has a positive minimum in x m ' a
similar discussion can be applied. I

The final step in our proof of Theorems 2 and 3 is to show that
IE L(n for every interval I as described in Lemma 12. It clearly suffices
to do so for closed subintervals T:= [XI' x 2 ] c I. We make use of the
de-la-Vallee-Poussin kernels, using the smoothness properties just ob
tained.

The function In := Vn * I belongs to CPF3 for n E N, and we have

From (I8) we obtain In(x) -+ I(x), I~(x) -+ f'(x), /:(x) -+ I"(x) in T, and
the convergence is uniform in T. From our assumption we know that

II"(x)/(x) - (f'(X))2/ ~ 0> 0, X E T,
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X E T,

for large n. Using (8) we deduce that the functions logl!;(x)!n(x) 
(!~(x))21 are concave in T, which therefore holds true for its limit
logl!"(x)!(x) - (!'(x))21 as well. Hence! E UT).
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